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Despair about High-Throughput 
D A l iData Analysis

• Many statisticians feel despair at high-Many statisticians feel despair at high
throughput data – e.g. microarrays, RNA-
Seq GWASSeq, GWAS, …

… large errors
h d… much non-random error

… non-reproducible results
…many ad-hoc practices



What if Microarrays Worked?What if Microarrays Worked?
• Cheap assays with low overhead and rapid turn-

around time suitable for population studiesaround time suitable for population studies
• Could characterize response to a variety of 

pharmaceutical agentspharmaceutical agents
• The Connectivity Map was funded ($1M) to do 

100 000 arrays profiling effects of various small100,000 arrays profiling effects of various small 
molecules on gene expression patterns

• The Genotype-Tissue Expression project, to findThe Genotype Tissue Expression project, to find 
eQTLs in 50 tissues, will use arrays for 
genotyping, but not for expression profiling



Outline
• The avalanche of high-throughput data

– Genomic and proteomic technologies
– Common characteristics of high-throughput 

data
– Issues that torment us

• New strategies for estimation – how to 
effectively borrow information across 
measures

• An application to drug-transporter 
interactioninteraction



The Technologies: GenomicsThe Technologies: Genomics
• Gene expression microarrays
• Microarrays for copy number, DNA 

methylation, genotypes, histone states, y , g yp , ,
protein-DNA binding



New TechnologiesNew Technologies

• New arrays to detect proteins modifiedNew arrays to detect proteins, modified 
proteins, and antibodies

• QHTS quantitative high throughput• QHTS – quantitative high-throughput 
sequencing



Characteristics of High-Throughput Data

• ‘Wide’: P (# parameters) >> N (# samples)
G ti P 500 000 N 1 000 5 000 P/N– Genetics: P ~ 500,000; N ~ 1,000 - 5,000; P/N 
~ 100 - 500
Genomics P 50 000 N 10 100 P/N– Genomics: P ~ 50,000 ; N ~ 10 – 100; P/N ~ 
500 - 5,000 
fMRI: P ~ 25 000 x 200; N ~ 20 50; P/N ~– fMRI: P ~ 25,000 x 200; N ~ 20 – 50; P/N ~ 
10,000

• Measures are parallel and of same type• Measures are parallel and of same type
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High-Throughput Data is CorrelatedHigh Throughput Data is Correlated

• PCA of even highly Scree plot of  PCA of  PCA of even highly 
variable genomic data 
sets represents 50% 

gene expression profiles 
from 60 cancer cell lines

of the variance with 4 
- 6 factors.

• Entropy has run wild; 
these cells have the 
most uncorrelatedmost uncorrelated 
variation of any gene 
expression data set

60 cell lines
expression data set



Issues with High-Throughput DataIssues with High Throughput Data
• Errors are more systematic than random

– PCA of technical differences in many array data sets can 
represent 70-80% of ‘pure error’ variance with 2 factors
Estimates of parameters are correlated because the errors– Estimates of parameters are correlated because the errors 
are correlated. 

– Correlations of estimates are often negative. Therefore the g
‘positive dependence’ assumptions of the usual FDR theory 
are not satisfied.
Despite statisticians’ sermons researchers don’t do– Despite statisticians’ sermons, researchers don’t do 
randomized designs: comparison between samples is often 
confounded with differences in technical preparation



Will this always be so?Will this always be so?
• Most high-throughput assays depend on severalMost high throughput assays depend on several 

(often enzymatic or competing) processes; these 
occur in complex liquid mixtures

• Technologists are always pushing the envelope 
of what is technically possible using a delicately 
balanced measurement process.

• These assays are expensive, and hard to 
h d l d lschedule randomly



How to Estimate Systematic Error
• The conventional strategy of analysis of 

covariance doesn’t help much here p
because… 

there are many known covariates for samples 
(dates of processing, batches of reagents, 
technician, …) 

but…but …
there are not many observations for each 
measure, hence few degrees of freedom to fitmeasure, hence few degrees of freedom to fit 
many covariates



Outline
Th l h f hi h th h t d t• The avalanche of high-throughput data

• New strategies for estimation 
(‘ li ti ’) h t ff ti l(‘normalization’) – how to effectively 
borrow information across measures

Estimating bias b non parametric regression– Estimating bias by non-parametric regression 
on technical characteristics of measures

– Multivariate analysis of real or syntheticMultivariate analysis of real or synthetic 
controls

– Multivariate analysis of residuals from modely
• A new strategy: use benchmark studies

– An effective hybrid approach
• An application to drug-transporter 

interaction



The Overall ModelThe Overall Model

• We want to infer biological effectsWe want to infer biological effects
• Effects confounded by technical common factors
• Some factors are known; some are unknownSome factors are known; some are unknown
• Model: Coefficients of interest

ενλα +++ TTT~ ABxy
known predictors unknown common known predictors
of interest factors biasing errors

“unknown unknowns”
common error factors

ff ti taffecting outcomes 
in known ways
“known unknowns”

m3
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m3 You are using the standard convention here,
but using the microarray convention later on
and the symbols are not quite consistent

which of these are known and which are unknown?
mreimers, 9/23/2010



StrategiesStrategies
• Strategy 1: Use known technical characteristics gy

of measures to identify those other measures 
most likely to be informative about biases in any 
particular measure (known unknowns)p ( )

• Strategy 2: Do PCA of controls across samples 
to infer common factors of bias and regress 
other measures on those factors (unknown )other measures on those factors (unknown …)

• Strategy 3a): Infer covariates by PCA of 
correlation structure of residuals from model 
(L k & S ) ( k k )(Leek & Storey) (unknown unknowns)

• Strategy 3b) Use PCA of residuals to infer null 
space of ‘technical’ variation for technologyspace of technical  variation for technology



Strategy 1: gy
Within sample regression of 

residuals on technical measuresresiduals on technical measures



Regressing Bias on Probe Characteristics

• Basic Idea: 
1. Most technical variation between chips is caused by1. Most technical variation between chips is caused by 

a few (unknown) systematic measurement factors 
2. Probes with similar technical characteristics 

( h d i h i i i l l l f(thermodynamic characteristics, typical level of 
saturation, etc.) are biased by similar amounts by 
these factors in the assayy

• Then technical variables are predictors of bias 
• We can treat real biological differences as ‘noise’ in 

order to estimate bias from unknown factors.
• Model is:

εαμ +++ ABxy T~ εαμ +++ ABxy ~

Strategy 1:20



Indexing Biases by Technical Characteristicsde g ases by ec ca C a acte st cs

• Thermodynamics can be indexed by equilibrium ‘melting’ 
(annealing) temperature Tm

• Saturation can be indexed roughly by average intensity (across all)
• Plots show deviations y-μ for two chips from (Cheung et al, Nature, 

2005) against two proxies for technical characteristics) g p
• Yellow loess curves track trend

Deviations of  log intensity from 
mean plotted against mean

Deviations of  log intensity from 
l d i T mean plotted against meanmean plotted against Tm

μ−y μ−y



AlgorithmAlgorithm

1. Construct deviations from component-wise1. Construct deviations from component wise 
average (reference) profile

2. Identify which technical variables have the y
most effect

3. Estimate induced bias on any chip by y p y
regressing deviations from average on 
technical variables

4. Subtract estimated bias from individual 
estimates



Nonlinear Fits are Much Better

• Non-linear, non-additive interactions are 
usualusual

• Local regression better than linear model

Low CT; near 3’ end
Deviations of  
chip GSM 25410 

LOESS curves tracking:

High CT; near 3’ end
Low CT; far from  3’ end
High CT; far from 3’ end

from average of  
all chips in study

Overall downward
trend (apparent
loss of  expression)

hi h l f

All probes

at higher values of
average intensity

Average of  all chips
Strategy 1

m5
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m5 maybe an easier graphic to understand effects of interactions
mreimers, 9/23/2010



Strategy 2:Strategy 2: 
Multivariate analysis of controlsy



Inferring covariates from Controls
• Variation in most measures reflect both 

biological and technical variabilitybiological and technical variability
• Variation of measures with little or no  biological 

variability reflect mostly technical variabilityvariability reflect mostly technical variability
• Variation of negative controls (e.g. random 

probes) reflects only technical variationprobes) reflects only technical variation
• The same common factors driving errors in 

these controls may drive errors in otherthese controls may drive errors in other 
measures

Strategy 2:30



West’s MethodWest s Method

• (West 2009) does PCA on 100 most stable(West, 2009) does PCA on 100 most stable 
genes across samples to infer two unknown 
covariates across samplesp

• Regresses all other genes on those inferred 
technical covariates; then subtracts estimatestechnical covariates; then subtracts estimates 
from measures 

• Finds significantly sharper results whenFinds significantly sharper results when 
testing for differential expression between 
tumor classes



Negative Controls Predict Variation 
i V l f L I i P bin Values of Low-Intensity Probes 

• MAQC Agilent data: Q g
4 samples x 5 replicates
300 ‘negative’ controls
(probes matching RNA 

that isn’t there)
• PC 1 of negative rr

el
at

io
n

PC 1 of negative 
controls has very high 
correlations with most 

f f
C

or
measures of genes of 
low mean intensity 
(many not expressed)( a y ot e p essed)

Average Intensity
Strategy 2



Synthetic Controls
• Many HT technologies don’t have controls
• However often several measures may reflect the• However often several measures may reflect the 

same underlying real object but differ in ways 
that may reflect different measurement biasesy
– For example reads mapping to mitochondrial genes
– The differences between these measures should be 

constant … but often are not
– Tracking such differences could detect common 

factors affecting all measuresfactors affecting all measures
• I call these differences between real measures 

‘synthetic controls’synthetic controls

Strategy 2



High-Throughput Sequencing DataHigh Throughput Sequencing Data

• HTS methods count the number of sequences q
matching each possible genomic position

• These ‘digital’ data are not supposed to suffer 
from technical biases

• Data: 5 replicates each of kidney and liver 
samples, normalized by total counts
– Marioni et al, Genome Research, 2008

• Puzzle: most house-keeping genes appear less 
expressed in harder-working liver tissue

Strategy 2



Synthetic Controls Identify Problems
• I examined differences in sequence counts 

starting at various positions within the Pattern of reads across
COX 1 gene

same highly expressed (mitochondrial) 
genes (synthetic controls)

• Two PC’s summarize almost all

g

• Two PC s summarize almost all 
differences in read count patterns across 
10 samples (at lower right)

Scree plot of
• BUT strongest differences are confounded 

with tissue identity
• Robinson et al (Genome Biology 2010)

Scree plot of  
PCA of  chr M 
differences

• Robinson et al (Genome Biology, 2010) 
demonstrated this bias (based on other 
considerations) in the data set



Bias in RNA-Seq DataBias in RNA Seq Data

from (Robinson & Oshlak, Genome Biology, 2010)from (Robinson & Oshlak, Genome Biology, 2010)



Strategy 3 gy
Multivariate analysis of 
residuals or replicatesresiduals or replicates



Inferred (Surrogate) Covariates
• Surrogate variable analysis (SVA)

– Leek and Storey, PLoS Genetics, 2007
• Motivation: many unmodeled (and unknown) 

factors affect the measures
• Even if known, most experiments don’t have 

sufficient d.f. to estimate their effects
• Idea: often the effects of several factors are 

somewhat correlated (on all probes)
Th h h i f bl f• They show how to infer a manageable set of 
ersatz (surrogate) covariates that predict 
almost the same variationalmost the same variation

Strategy 3a:40



The Leek-Storey Model

• There are factors f1, …, fK, which affect all genesThere are factors f1, …, fK, which affect all genes 
via linear combinations of fixed g1 (f1), …, gK (fK). 

• The bias (systematic error) for gene i in array j is:( y ) g y j
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• An additive representation with common 
functions can be represented as a linear u ct o s ca be ep ese ted as a ea
combination of transformed variables

• In terms of my notationy

Strategy 3a

ενλ ++ TT~ Bxy



How to Infer the Covariates
• Given observations YL x N and predictors XL x N , 

– (e.g. X might record diagnosis and age in columns)( g g g g )
• Fit the following model: 

L rxy βμ ++= ∑
ij

K

k kjikij

ijl ljiliij
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+=
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∑
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=
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• The residual matrix R is approximated by R ~ UDVT  

using singular value decomposition with K non-g g p
trivial components

• The kth row of matrix V records the kth inferred 
(surrogate) covariate across the N samples: 

Strategy 3a

m2



Slide 31

m2 Needs a picture and explanation of terms

Explain: what is intuitive meaning behind low rank SVD?
mreimers, 9/23/2010



PCA of MAQC ResidualsPCA of MAQC Residuals

• Four samples: A: brain; B mixed tissue; C: 3:1Four samples: A: brain; B mixed tissue; C: 3:1 
mixture of A & B; D 1:3 mixture of A & B

• Each sample hybridized five times in each of p y
three labs
Scree plot of  replicate PCA for Agilent 44K 1 color MAQC data set (3 sets of  4x5 reps)

Strategy 3a



Left- and Right-Handed 
A h U i SVDApproaches Using SVD

• Right singular vectors represent g g p
surrogate variables

• Left singular vectors represent 
b i f b f lbasis for subspace of purely 
technical variation

• Hypothesis: Technical errors• Hypothesis: Technical errors 
are similar across labs

• Implication: one can ‘learn’ p cat o o e ca ea
typical patterns of technical 
variation for each technology 
from one set of replicatesfrom one set of replicates

Strategy 3b



Algorithm
• Consider sets of technical replicates of the same 

samples, with only technical differences within setssamples, with only technical differences within sets
• PCA of replicates identifies major components
• Algorithm:Algorithm:

– Construct technical differences from mean of each set
– Robust PCA of differences

• Outliers can be handled by simple winsorization

– Find differences of each array from common mean of all 
arrays in experimentarrays in experiment

– Project each array’s difference onto K PC’s (K small)
– Subtract projection (typically 50% of variance)Subtract projection (typically 50% of variance)

• Leverage points in regression are also winsorized  
Strategy 1b



Results on MAQC DataResults on MAQC Data

• Using 2 PC’s (left
Number of F-scores 
greater than 7Using 2 PC s (left 

singular vectors) from 
4 groups of 5 

greater than 7

replicates
• Somewhat more 

genes detected as 
differentially 
expressed acrossexpressed across 
samples

• ~40% of variance• ~40% of variance 
within experiment 
explained by 2 PC’s Strategy 1a



Improvement for MAQC Data:  
CDF f R2 M Li iCDF of R2 Measures Linearity

• Samples C & D are mixtures of A & BSamples C & D are mixtures of A & B
• Expression measures in C & D should be 

li bi ti f th i A & Blinear combinations of those in A & B
R2 measures linearity

PCA normalization
Improves numbers of R2

significant at p < .005

Strategy 1a:25



Can We Learn from Others’ Errors?Can We Learn from Others  Errors?

• Results in MAQC data are equivalent toResults in MAQC data are equivalent to 
consistent regression on inferred covariates

• Left singular vectors reflect characteristics of g
measures (probes) rather than of experiment

• Perhaps these characteristics reflect the p
technology and are stable across experiments

• Test: do SVD on residuals from one lab, and use 
those to normalize other labs following left 
singular vector procedure – “Benchmark PCA”

Strategy 1b



Results of Benchmark PCA on 
MAQC DMAQC Data

• Using each lab’s PC’s
Number of F-scores 
greater than 7Using each lab s PC s 

to normalize the other 
two labs

greater than 7

• Five PC’s (left 
singular vectors) used

• Proportion of variance 
explained > 50%
– 5/40,000 expected if 

taking a ‘random’ 
subspacesubspace

Strategy 1b



I t ti t t i d iIntegrating strategies and issues 
for the future



Combining Methods
• Use non-parametric surface most 

effectively to correct non linear variationeffectively to correct non-linear variation
– spatial- and intensity-dependent biases

These effects often not well captured by PCA– These effects often not well captured by PCA 
– Spatial inhomogeneities, saturation and 

cross-hybridization are nonlinearcross hybridization are nonlinear
– LOESS adequate for 3 or 4 predictors

• Follow with PCA of residuals fromFollow with PCA of residuals from 
technical differences
– For CGH arrays a plausible proxies for y p p

technical differences are differences between 
signals from neighboring probes

:50



Results with Combined MethodsResults with Combined Methods

• Expression arrays: Affy Focus U133AExpression arrays: Affy Focus, U133A
– Improve ratio of differences / errors by 2X - 3X

ChIP chip: Nimblegen 380K:• ChIP-chip: Nimblegen 380K: 
– Improve S/N by 2 X

• Array CGH: Agilent 44K and Nimblegen 
380K:
– Improve S/N by 2 X – 3 X (MS ready)



Application to Drug DiscoveryApplication to Drug Discovery

• SLC genes are a large family of sodium-SLC genes are a large family of sodium
coupled importers – most uncharacterized

• Some sub families import small organic• Some sub-families import small organic 
molecules
W ld lik t k hi h SLC’• We would like to know which SLC’s may 
import various small molecule drugs

• Tumors over-expressing such SLC’s may 
be more sensitive to drugs they import



Using Correlations with NCI 60Using Correlations with NCI 60
• NCI 60 cell lines have largest collection of public g p

cytotoxic drug-response data
• NCI 60 cell lines express varying amounts of 

many SLC importersmany SLC importers
• If a particular SLC imports a particular drug then 

we expected a high correlation between the SLC 
i tt d th d ’ GI50 ttexpression pattern and the drug’s GI50 pattern 

across the NCI 60
• Some qPCR data available for a few SLC’sSo e q C data a a ab e o a e S C s
• Microarray data available on all - but microarray 

measures are poor!



ResultsResults

• After normalization array data for manyAfter normalization array data for many 
transporters exhibit statistically significant 
correlations with a small subset of drugscorrelations with a small subset of drugs

• Examples: 
E i f SLC6A14 (k i id– Expression of SLC6A14 (known amino acid 
transporter) 66% correlated with GI50 for Urea
Expression of SLC43A3 (completely– Expression of SLC43A3 (completely 
uncharacterized) is 70% correlated with GI50 of 
2-Naphthacenecarboxamide2 Naphthacenecarboxamide



Implications and ChallengesImplications and Challenges

• Systematic error is a major issue for the newSystematic error is a major issue for the new 
high-throughput technologies – including the 
‘digital’ technologies (HTS), which have ‘analog’ 
assay preparation steps

• We need a wide range of approaches for 
estimating biases in high-dimensional responses

• We can make significant improvements to 
b i k i ( dcurrent best practices to make microarrays (and 

HTS) substantially more accurate
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